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Abstract. We present detailed results from numerical simulations of a simple mean-field
dynamical model for the kinetics of phase ordering in binary mixtures with surfactants but
no hydrodynamic interactions. In particular, we demonstrate that the scaled structure factor in
the presence of surfactants is the same as that in the pure case, except in the extreme tail region,
where the structure factor for the case with surfactants shows a non-Porod decay for all times.

1. Introduction

There has been much interest in the dynamics of phase ordering—the temporal evolution of
a two-phase homogeneous mixture which has been rendered thermodynamically unstable by
a sudden (temperature or pressure) quench [1]. Typically, the initially homogeneous system
separates into domains which are rich in either of the two phases. These domains coarsen
with time and the experimentally interesting features are:

(a) the nature of the domain growth laws; and
(b) the form of the time-dependent structure factor, which characterizes the evolving

morphology.

For pure and isotropic systems, there is a good understanding (at least experimentally
and numerically) of the above-mentioned features [1]. As far as the domain growth law
is concerned, it is well established that the characteristic length scale has an asymptotic
behaviourL(t) ∼ tφ , where t is the time andφ is the growth exponent, which depends
critically on the nature of the phase-ordering process. Thus, for the case with nonconserved
order parameter (e.g., ordering of a ferromagnet),φ = 1/2 [1]. For the case with conserved
order parameter but no hydrodynamic effects (e.g., segregation of a binary alloy),φ = 1/3
[1]. Finally, for the case with conserved order parameter and hydrodynamic effects (e.g.,
segregation of a binary fluid), the growth exponentφ = 1 [2].

Of course, few experimental systems are as simple as those described above. A
particularly interesting class of more complex systems is that of binary mixtures (denoted
by AB, say) containing surfactant molecules (denoted by S, say) [3]. A typical surfactant
has two chemically dissimilar parts, each of which dissolves in a different component of the
binary mixture. Thus, surfactants can drastically reduce the surface tension associated with
the interface between the two phases of the mixture and effectively freeze phase separation
in the late stages, thereby giving rise to a rich variety of microstructures.
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In this paper, we will address the problem of phase-ordering dynamics in a binary
mixture (AB) containing surfactants (S) for the case of a critical quench, i.e., we consider
a situation in which there are equal amounts of A and B. Because of its physical and
technological importance, this is a problem which has received some attention in the
literature [4]. Our goal is to formulate a simple mean-field dynamical model for this problem
and to present numerical results therefrom. We neglect the role of hydrodynamic effects,
which is reasonable in the case of binary alloys and thin films of binary fluid mixtures.

Our present study should be viewed in the larger context of phase-ordering dynamics
in systems with quenched or annealed disorder. A number of recent investigations [5]
have revealed that the presence of quenched disorder drastically alters the nature of the
domain growth law but does not affect the morphology of the coarsening domains—at least
as reflected in the structure factor. The role of annealed disorder (e.g., surfactants [3] or
vacancies [6]) is somewhat different and not understood as well. Because of their mobile
nature, surfactants or vacancies migrate to the interfaces between different phases and have
a more subtle effect on the kinetics of domain growth, which we will elaborate upon shortly.

This paper is organized in the following fashion. Section 2 briefly reviews previous
numerical studies of phase-ordering dynamics in binary mixtures with surfactants. In section
3, we present our mean-field dynamical model for this problem. Section 4 contains detailed
results from a numerical simulation of this model and section 5 ends this paper with a
summary and discussion of our results.

2. A brief review of extant numerical studies

As there are already a number of good review articles on this subject [4], we will only
present a brief survey of extant numerical studies of this problem. For a summary of the
relevant experimental results (mostly on binary polymer blends AB with a block copolymer
A–B acting as surfactant), we refer the reader to Kawakatsu and co-workers [4]. The
relevant numerical studies can be broadly summarized as follows.

Kawakatsu and co-workers [4, 7] have numerically studied phase-ordering dynamics in
a binary mixture with surfactants using a hybrid model. In this model, the two components
of the mixture are described at the macroscopic level via an order parameter field and
the surfactants are described at the microscopic level. This hybrid model is somewhat
cumbersome, largely because of the level of realism incorporated into it in terms of the
translational and rotational degrees of the surfactant molecules. Furthermore, hydrodynamic
effects are not included. Kawakatsu and co-workers investigated the late stages of domain
growth for both critical and off-critical quenches. For the critical quench, they find the usual
bicontinuous morphology for the A-rich and the B-rich phases, and the surfactants migrate
to the interfaces between the two phases. For the off-critical quenches they obtain a droplet
morphology. The domain growth law in both cases shows a crossover fromL(t) ∼ t1/3 in
the early and intermediate stages (the usual Lifshitz–Slyozov growth for the pure case) to a
slower growth in the very late stages. Kawakatsu and co-workers are unable to identify the
asymptotic growth law numerically. However, a simple argument suggests that it should
be of the ‘logarithmic’ formL(t) ∼ ln(t/t0), and so domain growth is practically frozen at
late times. The essence of this argument is that there is an ongoing accretion of surfactants
onto the interfaces, and so surface tension diminishes with time. When the interfaces are
completely saturated with surfactants, the surface tension becomes zero and there is no
curvature-driven domain growth. If one assumes that the surface tension goes exponentially
to zero as a function ofL(t) [7], this results in an asymptotic ‘logarithmic’ growth law. We
stress that this ‘logarithmic’ growth is an artefact of theansatzfor the surface tension. It
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should not be confused with the ‘logarithmic’ growth expected in phase-ordering systems
with quenched disorder as a result of thermally activated barrier hopping [5]. Kawakatsu
and co-workers have also investigated the form of the scaled structure factor and find that
there is a slight broadening in the peak due to the presence of surfactants.

Laradji et al [8] have also studied this problem using a phenomenological model with
two order parameters, one corresponding to the density difference in A and B and the other
corresponding to the concentration of S. Again, hydrodynamic effects are not incorporated in
this study. Laradjiet al consider critical quenches and their results for the domain growth
law are in broad agreement with those we have described above—though they observe
a much quicker onset of the slow-growth regime. They are also unable to numerically
ascertain the precise nature of the asymptotic domain growth law. More recently, Laradjiet
al [9] have conducted a large-scale numerical study of this problem by means of a molecular
dynamics (i.e., microscopic) simulation. Again, they find an asymptotic domain growth law
which is considerably slower than the Lifshitz–Slyozov law, but they are unable to fix a
functional form. Furthermore, they find that there is no appreciable difference between the
scaled structure factor for the pure case and the case with surfactants—in contrast to the
results of Kawakatsu and co-workers [7]. We should point out here that the studies by
Laradji et al [8, 9] assume that the length scale saturates out to a finite value ast → ∞.
This is in contrast to the work of Kawakatsu and co-workers [4, 7], who assume that the
length scale keeps growing at late times but the growth is ‘logarithmically’ slow, i.e., frozen
for all practical purposes.

Finally, there are also a number of Monte Carlo or MC (i.e., microscopic) simulations
of this problem. Kawakatsu and Kawasaki [10] have studied a spin model using MC
techniques. The broad features of this study are consistent with those described above.
However, as is often the case in microscopic studies of phase-ordering systems with a
conserved order parameter, it is difficult to make conclusive quantitative statements on the
basis of a MC study. Also Morawietzet al [11] have introduced a dynamical model which
associates Kawasaki-like spin-exchange kinetics with the Widom model of ternary mixtures.
However, they focus on the disordering problem (from an ordered initial condition) rather
than the ordering problem, which is of interest to us here.

Even though we will not go into the details of experimental work here, we would like
to remark that different experiments are not entirely in agreement with each other or the
numerical results that we have described above. For example, Roe and co-workers [12] find
a Lifshitz–Slyozov growth over the entire duration of their experiment on polymer mixtures
with block copolymer surfactants. This is in disagreement with the numerical studies of
[7–9]. On the other hand Hashimoto and Izumitani (see [13]) do find a crossover from
Lifshitz–Slyozov growth to a slower growth in the very late stages. However, they find that
the scaled structure factor is independent of the surfactant concentration—in disagreement
with the numerical results of Kawakatsu and co-workers [7].

3. The mean-field dynamical model

We will now formulate our mean-field dynamical model for phase-ordering dynamics in
binary mixtures with surfactants. As we had mentioned earlier, we do not incorporate
hydrodynamic effects into our model at present. The starting point of our modelling is the
simple lattice model proposed by Alexander [14],

H = −J
∑
〈i,j〉

σiσj + J1

∑
〈i,j〉

σiσj τij (1)
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whereσi = ±1 are defined on the sites of a cubic lattice, andτij = 0 or 1 are defined on
the bonds betweeni and j . In standard representation,σi = +1 (or − 1) corresponds to,
say, an A (or B) atom at sitei. Similarly, τij = 1 (or 0) refers to the presence (or absence)
of a surfactant molecule S on the bondij . We are interested in the cases whereJ > 0, in
which the A and B atoms like to separate out, and whereJ1 > 0 in which the presence of S
inhibits the separation of A and B. (We should point out that the original Alexander model
allowed for directionality of the surfactant by having a third stateτij = −1, which refers
to the surfactant molecule pointing in the energetically unfavourable direction. Following
Chenet al [15], we set the energy of this state to infinity.)

Before we proceed to describe our mean-field dynamical model, some remarks regarding
our use of the Alexander Hamiltonian are in order. The phase diagram for this simple model
does not contain a number of important features which are seen in experiments on surfactant
systems. Many of these features can be recovered by the introduction of surfactant–
surfactant interactions [15]. In this paper, our primary interest is in the phase-ordering
dynamics of a critical binary mixture (with surfactants) quenched from its disordered
phase deep into the two-phase coexistence regime. In such a situation, the surfactants
rapidly migrate to the interfaces between domains. In the early and intermediate stages of
phase separation, the interface area is high and the surfactant density on the interfaces is
correspondingly low, so the surfactant–surfactant interaction is not important. Thus, the
rate of accretion of surfactants on the interfaces (and therefore the time dependence of the
surface tension) is determined purely geometrically by the rate of reduction of the interfacial
area. In the late stages of phase separation, the surfactant density on the interfaces is high
and a repulsive surfactant–surfactant interaction could result in a situation where the surface
tension does not go to zero asymptotically as the surfactant concentration on the interface
does not saturate out. We will not consider this situation here. For our study of phase-
ordering dynamics, it suffices to consider the simple Alexander model, except perhaps in
the very late stages of phase separation, as we shall discuss later. In any case, the model we
present below extends trivially to more complicated Hamiltonians which give rise to more
realistic phase diagrams [15].

The second remark we would like to make concerns the phase diagram of the Alexander
model. It was demonstrated by Alexander [14] that the partition function of (1) can be
mapped into that for an Ising model. Thus, ford = 2, the phase diagram of the Alexander
model is known exactly by exploiting the Ising analogy. However, we will only consider the
mean-field phase diagram for this Hamiltonian as that is the one relevant to our dynamical
model.

We can also put the surfactant variable in familiar spin language by defining

τij = (1 + Sij )/2

so thatSij = +1 corresponds to the presence of S andSij = −1 corresponds to a vacancy
V or no surfactant. In this notation, we have

H = −V1

∑
〈i,j〉

σiσj + J1

2

∑
〈i,j〉

σiσjSij (2)

whereV1 = J − (J1/2).
We associate dynamics with our model by allowing for Kawasaki spin exchanges [16]

between the site variablesσi andσLi
(whereLi refers to a neighbour of i); and also between

the bond variablesSij andSab (whereab refers to a bond adjacent toij ). The corresponding
master equation for the conditional probability distributionP({σi}, {Sij }; t) can be written
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as follows:
∂

∂t
P (...σi, σLi

, ...Sij , Sab..; t)

= − 1

2τ1

∑
i

∑
Li

W [σi ↔ σLi
]P(...σi, σLi

, ...Sij , Sab..; t)

− 1

2τ2

∑
ij

∑
ab

W [Sij ↔ Sab]P(...σi, σLi
, ...Sij , Sab..; t)

+ 1

2τ1

∑
i

∑
Li

W [σLi
↔ σi ]P(...σLi

, σi, ...Sij , Sab..; t)

+ 1

2τ2

∑
ij

∑
ab

W [Sab ↔ Sij ]P(...σi, σLi
, ...Sab, Sij ..; t).

(3)

In (3), τ1 andτ2 are the characteristic times for an A–B exchange (denoted asσi ↔ σLi
) and

a S–V exchange (denoted asSij ↔ Sab), respectively. The transition probabilityW [X ↔ Y ]
has a form consistent with the detailed balance condition [16]:

W [X ↔ Y ] ≡ W [1H(X ↔ Y )] = 1 − tanh

{
1H(X ↔ Y )

2T

}
(4)

where1H(X ↔ Y ) is the increase in energy associated with theX ↔ Y exchange;T is
the temperature; and we have have set the Boltzmann constant to unity. The energy changes
associated with different types of exchange are

1H
(
σi ↔ σLi

)
= (

σi − σLi

) V1

∑
j∈Li

σj −
∑

j∈LLi

σj

 − J1

2

∑
j∈Li

σjSij −
∑

j∈LLi

σjSLij

 (5a)

1H
(
Sij ↔ Sab

) = J1

2

(
Sij − Sab

) [
σaσb − σiσj

]
. (5b)

Multiplying the master equation byσk and averaging over the time-dependent probability
distribution, we obtain the dynamical equation

2τ1
∂

∂t
〈σk〉 = −q〈σk〉 +

∑
Lk

〈σLk
〉 +

∑
Lk

〈
(1 − σkσLk

) tanh

V1

T

∑
j∈Lk

σj −
∑

j∈LLk

σj


− J1

2T

∑
j∈Lk

σjSkj −
∑

j∈LLk

σjSLkj

〉
(6)

where angular brackets refer to the configurational averaging andq is the number of nearest
neighbours of a lattice site. Similarly, an equation for〈SkLk

〉 can be obtained by multiplying
the master equation bySkLk

and averaging to get

2τ2
∂

∂t
〈SkLk

〉 = −q〈SkLk
〉 +

∑
ab

〈Sab〉 −
∑
ab

〈(
1 − SkLk

Sab

)
tanh

[
J1

2T

(
σkσLk

− σaσb

)]〉
(7)

where the labelab refers to the links adjacent tokLk. So far, we have made no
approximations. Unfortunately the equations (6) and (7) are not very useful in their present
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form because they constitute a hierarchy of coupled equations involving higher moments of
the σi andSij . These are decoupled via the mean-field approximation [17], which replaces
the average of a function ofσi and Sij (as in (6) and (7)) by the same function of the
averages ofσi and Sij . This drastic approximation ignores fluctuations and truncates the
dynamical equations at the level of the first moment, so they have the form

2τ1
∂

∂t
〈σk〉 = −q〈σk〉 +

∑
Lk

〈σLk
〉 +

∑
Lk

(1 − 〈σk〉〈σLk
〉) tanh

V1

T

∑
j∈Lk

〈σj 〉 −
∑

j∈LLk

〈σj 〉


− J1

2T

∑
j∈Lk

〈σj 〉〈Skj 〉 −
∑

j∈LLk

〈σj 〉〈SLkj 〉
 (8)

and

2τ2
∂

∂t
〈SkLk

〉 = −q〈SkLk
〉 +

∑
ab

〈Sab〉

−
∑
ab

(
1 − 〈SkLk

〉〈Sab〉
)

tanh

[
J1

2T

(〈σk〉〈σLk
〉 − 〈σa〉〈σb〉

)]
. (9)

Equations (8) and (9) constitute the mean-field dynamical model that we will use in this
paper to simulate phase-ordering dynamics in binary mixtures with surfactants. Before we
present our numerical results, we would like to discuss various aspects of this dynamical
model.

Static solutions of this model are obtained by requiring(∂/∂t)〈σk〉S and (∂/∂t)〈SkLk
〉S

to be zero. It is readily confirmed that (8) and (9) have the correct mean-field static solution:

〈σk〉S = tanh

[
V1

T

∑
Lk

〈σLk
〉S − J1

2T

∑
Lk

〈σLk
〉S〈SkLk

〉S
]

〈SkLk
〉S = − tanh

[
J1

2T
〈σk〉S〈σLk

〉S
]

.

(10)

These are also the static solutions of the mean-field dynamical equations obtained by
associating Glauber spin-flip kinetics with the spin variables in (2). This is in accordance
with our expectation that the phase diagram of the model should be independent of the
dynamics whereby the system approaches equilibrium. The mean-field phase diagram can
be obtained by looking for homogeneous solutions of (10) as

σ ∗ = tanh

(
qV1

T
σ ∗ − qJ1

2T
σ ∗S∗

)
S∗ = − tanh

(
J1

2T
σ ∗2

)
.

(11)

For 0< qV1/T < 1, the only solutions of (11) areσ ∗ = S∗ = 0 and this corresponds to the
paramagnetic state. ForqV1/T > 1, a bifurcation occurs wherebyσ ∗ = 0, S∗ = 0 becomes
an unstable fixed point and there are two new stable fixed points(σ ∗, S∗) = (a, b) and
(−a, b), wherea andb are obtained as solutions of the implicit equations (11). These fixed
points correspond to the ferromagnetic phase. It is also possible that the surfactant reduces
the A–B interaction energy to such a degree thatV1 < 0. For −1 < qV1/T < 0, we still
have a paramagnetic state. ForqV1/T < −1, the paramagnetic state is no longer stable
and is replaced by an antiferromagnetic state, which corresponds to an alternating solution
for the 〈σk〉-field in (10). We are interested in temperature quenches from the paramagnetic
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region (forV1 > 0) to the ferromagnetic region. The critical temperature isTc = qV1 in the
mean-field approximation. Whenσ ∗ acquires a positive or a negative value corresponding
to domain saturation in the bulk,S∗ has a negative value, which corresponds to a depletion
of surfactants in the bulk. This is in agreement with our intuitive picture that the surfactants
will accumulate in the interfacial region.

It is instructive to perform a linear stability analysis to examine the growth or decay of
small fluctuations about a homogeneous background in (8) and (9). We put〈σk〉 = σ + δσk

and〈SkLk
〉 = −S + δSkLk

in (8) and (9) and linearize the equations to get

2τ1
∂

∂t
δσk = −qδσk +

∑
Lk

δσLk
+ (1 − σ 2)

(
V1

T
+ J1S

2T

) ∑
Lk

∑
j∈Lk

δσj −
∑

j∈LLk

δσj


−(1 − σ 2)

J1σ

2T

∑
Lk

∑
j∈Lk

δSkj −
∑

j∈LLk

δSLkj

 (12)

and

2τ2
∂

∂t
δSkLk

= −qδSkLk
+

∑
ab

δSab − (1 − S2)
J1σ

2T

∑
ab

(δσk + δσLk
− δσa − δσb). (13)

In this paper, we are interested in the critical quench—that is,σ = 0. For this case,
we Fourier transform (12) to see that the〈σk〉-field is unstable to fluctuations when
qV1/T + qJ1S/2T > 1 and the〈SkLk

〉-field is always linearly stable. Thus, the surfactants
migrate to the interfacial regions after gradients in〈σk〉 have been established in the
segregating system.

The next point that we wish to address concerns the level of our modelling. Our
prescription preceding equations (8) and (9) mimics the usual stochastic Monte Carlo
dynamics, which constitutes a microscopic model. However, the mean-field approximation
corresponds to a coarse-grained level of modelling and our final equations (8) and (9)
constitute a macroscopic-level description of the problem. As a matter of fact, in master-
equation-based ‘derivations’ of the phenomenological Cahn–Hilliard equation of phase-
ordering dynamics in the absence of surfactants [17], one identifies〈σk〉 in (8) (with
〈SkLk

〉 = −1 everywhere) as a coarse-grained order parameter. Terms like〈σLk
〉 are then

Taylor expanded to arrive at (after a number of drastic approximations) the Cahn–Hilliard
equation. We prefer to work directly with equations (8) and (9) because they involve no
further approximation beyond the mean-field approximation and are also convenient for
numerical implementation. Of course, we should no longer interpret the ‘sites’ and ‘links’
as referring to a microscopic lattice, which was the starting point of our modelling.

The final point that we wish to make concerns the role of thermal noise in our modelling.
We can also incorporate thermal noise into our dynamical model to obtain a fluctuation-
level description [18]. However, thermal noise only modifies the interfacial structure and
is expected to be irrelevant in the asymptotic regime of phase ordering when the relevant
length scales are large. This has been demonstrated explicitly in the pure case [19] and
should be valid for our present model also. Therefore, we work with deterministic models
in the present exposition.

4. Numerical results

We now present detailed numerical results from our simulations of the model contained in
equations (8) and (9). (We focus on the caseτ1 = τ2 and rescale 2τ1 into the time variable.)
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Figure 1. Temporal evolution of a disordered initial condition for the model described in the
text. The system of interest is a binary mixture AB with either surfactants (S) or vacancies (V)
on the ‘links’ between the ‘sites’ of A and B. The initial condition for the AB field〈σk〉 consists
of uniformly distributed random fluctuations of amplitude 0.05 around a zero background. The
initial condition for the SV field〈SkLk

〉 has similar fluctuations about a backgroundc = −0.45.
Evolution pictures are shown at times 800, 1600, 3200 and 8000, depicted on the appropriate
frame. Sites with positive〈σk〉 are marked in black and sites with negative〈σk〉 are not marked.
Similarly, links with positive〈SkLk

〉 are marked by crosses, which are primarily confined to the
interfacial regions.

We have simulated this model on anN × N lattice (i.e.,d = 2) with periodic boundary
conditions in both directions. A simple Euler discretization scheme was used with mesh
size 1t = 0.01. Our parameter values wereT = 0.5Tc and J1 = T . The corresponding
saturation values for the two order parameters areσ ∗ = 0.994 andS∗ = −0.457. The initial
conditions for a run must mimic the disordered state before the quench. Thus, we chose
the initial condition for the AB field(〈σk〉) as a uniformly distributed random fluctuation
(of amplitude 0.05) about a zero background. This corresponds to a critical quench with
equal amounts of A and B. The initial condition for the SV field(〈SkLk

〉) was taken to be
a random fluctuation (also of amplitude 0.05) about a background ofc = −0.40 or −0.45,
corresponding to a small concentration of the surfactants. (Recall that the saturation value
is S∗ = −0.457.)

The experimentally interesting quantity in phase-ordering problems is the time-
dependent structure factorS(k, t) of the ordering field, which is defined as

S(k, t) = 〈σ(k, t)∗σ(k, t)〉 (14)

wherek is the wavevector andσ(k, t) is the Fourier transform of the AB field〈σk〉 at time
t . On our discrete lattice, the wavevectorsk take the discrete values 2π(kx, ky)/N , where
kx andky range from−N/2 to N/2 − 1. In (14), the angular brackets refer to an average
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Figure 2. Order parameter profiles for the temporal evolution shown in figure 1 The cross-
section is taken parallel to the horizontal axis at the centre of the vertical axis. The solid line
refers to the AB field and the dashed line refers to the SV field.

over initial conditions. The structure factor is normalized as
1

N2

∑
k

S(k, t) = 1.

All the results presented below are for the spherically averaged structure factorS(k, t),
computed as an average over 50 independent runs forN = 256. Experimentalists are
typically interested in whether or not the structure factor exhibits dynamical scaling [20]—
that is, whether or not the time dependence of the structure factor has the simple scaling
form

S(k, t) = L(t)dF (kL(t)) (15)

whered is the dimensionality andF(x) is a time-independent master function. The crucial
implication of dynamical scaling is that the phase-ordering system preserves its morphology
but the length scale of the pattern is magnified in time. There are a number of equivalent
definitions of the characteristic length scale, if it exists. We use the inverse of the first
moment of the spherically averaged structure factor as a measure of the length scale, i.e.,
L(t) ∼ 〈k〉(t)−1, where

〈k〉(t) =
∫ km

0
dk kS(k, t)

/∫ km

0
dk S(k, t). (16)

In (16), the upper cut-offkm is taken as equal to half the magnitude of the largest wavevector
lying in the Brillouin zone. Clearly, we can also define length scales from higher moments
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of the structure factor or the zeros of the real-space correlation function. In the scaling
regime, these different definitions should all correspond to the same characteristic length
scale up to prefactors, which may be different [1].

Figure 3. Analogous to figure 1, but the SV background is−0.40.

Figure 1 shows the evolution of our model from a disordered initial condition for
c = −0.45. (All evolution pictures that we show here are for the caseN = 128, in contrast
to the structure factor, which is computed forN = 256.) Sites with positive〈σk〉 (rich in A,
say) are marked in black and sites with negative〈σk〉 (rich in B, say) are not marked. The
crosses refer to regions rich in S, i.e., where the field〈SkLk

〉 becomes larger than zero. It is
clear from figure 1 that the surfactants rapidly migrate to the AB interfaces. Nevertheless,
the morphology is still reminiscent of spinodal decomposition in pure binary mixtures [1].
Figure 2 shows the order parameter profiles for the evolution depicted in figure 1. The
profiles are measured along a cross-section parallel to the horizontal axis and at the centre
of the vertical axis. The solid line denotes the order parameter profile for the AB field
and the dashed line refers to the SV field. Figure 2 confirms that the interfacial regions
are enriched in surfactants and that there are no surfactants in the bulk domains. Figures
3 and 4 are analogous to figures 1 and 2 but for the casec = −0.40, corresponding to
a higher surfactant concentration. These figures are similar to the previous ones but the
domain growth is somewhat slower in this case.

We next consider the property of dynamical scaling. Figure 5(a) is a plot of data for
S(k, t)〈k〉(t)2 versusk/〈k〉(t) from different times for the casec = −0.45 (depicted in
figures 1 and 2). The collapse of data onto a single master function confirms that dynamical
scaling is valid. Figure 5(b) reports the data from figure 5(a) on a log–log scale and confirms
that the data collapse stretches into the tail region. The dashed line in figure 5(b) has a
slope of−3 and corresponds to the two-dimensional form of the well-known Porod law
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Figure 4. Analogous to figure 2, for the evolution shown in figure 3.

(S(k, t) ∼ k−(d+1) for largek), which characterizes scattering off sharp interfaces. We do
not observe Porod’s law in the tail, which is not surprising as the order parameter field was
not hardened before computing the structure factor. For the pure case, it has been argued
by Oono and Puri [21] that the nonzero interfacial width gives rise to nonuniversal effects
until late into the phase separation process. We will discuss this in greater detail shortly. A
similar dynamical scaling property is seen forc = −0.40 (not shown here). The dynamical
scaling of the structure factor has also been observed in the earlier simulations of Kawakatsu
and co-workers [7] and Laradjiet al [8].

In figure 6, we compare the scaled structure factors for the pure case and the case with
surfactants. Figure 6(a) superposes data forS(k, t)〈k〉(t)2 versusk/〈k〉(t) for the different
surfactant concentrationsc = −0.40,−0.45 (at dimensionless time 8000) and the pure case
(at dimensionless time 4000). The data for the pure case are obtained from a simulation of
(8) with J1 = 0. The statistics are the same as those described previously and the quench
temperature is againT = 0.5Tc. As is evident from the figure, the scaled structure factor
appears to be independent of whether or not surfactants are present, suggesting that the
morphology in the case with surfactants is the same as that in the pure case. (However, this
‘superuniversality’ does not stretch into the extreme tail region as we will discuss shortly.) A
similar feature has been observed for phase-ordering dynamics in the presence of quenched
disorder [5] and also in the presence of annealed vacancies [6]. In this respect, we are not
in agreement with Kawakatsu and co-workers [7], who find that the scaled structure factor
is somewhat broader in the presence of surfactants. However, Laradjiet al [9] find a similar
superuniversality of the structure factor in their molecular dynamics simulations.

Figure 6(b) plots the data of figure 6(a) on a log–log scale. The superuniversality of
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Figure 5. (a) Dynamical scaling of the structure factor for the evolution of figure 1, with
surfactant field averagec = −0.45. The figure superposes data forS(k, t)〈k〉(t)2 versusk/〈k〉(t)
from dimensionless times 1600, 4800, 6400, and 8000 (denoted by the symbols indicated).
(b) Data from (a), plotted on a log–log scale. The dashed line with a slope of−3 corresponds
to the Porod lawS(k, t) ∼ k−3, which characterizes scattering off sharp interfaces.

the structure factor extends some distance into the tail region also but there is a divergence
of the tails at very large values ofk. Furthermore, none of the structure factor tails exhibit
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Figure 6. (a) Superposition of the scaled structure factor data (i.e., a plot ofS(k, t)〈k〉(t)2

versusk/〈k〉(t)) for the pure binary mixture (at dimensionless time 4000), and for the surfactant
concentrationsc = −0.40 and−0.45 (at dimensionless time 8000). (b) Data from (a), plotted
on a log–log scale. The dashed line has the same meaning as in figure 5(b).

Porod’s law (S(k, t) ∼ k−3 for largek), which characterizes scattering off sharp interfaces.
As we had mentioned earlier, the reason for this is well understood in the pure case. It is
a consequence of a second length scale in the problem [21], namely the nonzero interfacial



240 R Ahluwalia and S Puri

width σw. As a result of this second length scale, the structure factor tail decays much
faster than the Porod tail even at late times. However, becauseL(t) grows with time, the
onset of the nonuniversal portion of the tail is pushed further out as time progresses. Thus,
there is an upward drift in the tail with the passage of time. Ast → ∞, σw/L(t) → 0
and the interface thickness becomes irrelevant compared to the characteristic domain size,
so the scaled structure factor approaches its asymptotic form. In numerical simulations,
the asymptotic structure factor with a Porod tail is usually obtained by hardening (i.e. by
taking the sign of) the order parameter field before computing the structure factor. In the
case with surfactants, matters are complicated by the fact that there is an ongoing accretion
of surfactants at the interfaces, so the interface width is no longer time independent and
may be denoted asσs(t). As a matter of fact, a simple physical argument indicates that
the average surfactant density on the interfaces is proportional to the length scaleL(t).
At late times, the interface width is the same as the thickness of the surfactant layer, so
σs(t) ∼ L(t) andσs(t)/L(t) ∼ constant, even at late times. Thus, the scaled structure factor
shows a non-Porod (and non-power law) decay even at late times as a consequence of the
soft interfaces which stay relevant for all times. Furthermore, there is no upward drift in the
tail of the structure factor at later times, as is clear from figure 5(b). This is an important
difference between the scaled structure factors for the case with surfactants and the pure
case. As we have mentioned before, the scaled structure factor for the pure case shows a
Porod decay at very late times.

Before we proceed, we would like to remark that our results for the large-k decay of
the structure factor differ from those of Laradjiet al [9], who find that the presence of
surfactants leads to a ‘power-law decay’ which is slower than the Porod-law decay. This
result of Laradjiet al does not appear to be consistent with the general argument that soft
interfaces lead to a nonalgebraic decay which is much faster than the Porod-law decay [21].

The reader might be somewhat puzzled by the fact that our data for the pure case in
figure 6(b) appear to be further from the asymptotic form (i.e., with a Porod tail) than
the data for the case with surfactants—even though the length scale for the pure case at
t = 4000 is larger than the length scale for the case with surfactants att = 8000, as will be
seen shortly. This is a consequence of the fact that our simulation for the pure case (with
T = 0.5qJ ) has considerably softer interfaces than our simulations for the surfactant case
(with T = 0.5qV1 andJ1 = T or T = 0.25qJ ) to begin with. With the passage of time,
the scaled data for the pure case will show an upward drift and finally cross the data for
the case with surfactants in its approach to the Porod tail.

Finally, we show data for the characteristic domain sizeL(t) as a function of
dimensionless timet . Figure 7(a) plotsL(t) versus t for the different surfactant
concentrationsc = −0.40, −0.45 (up to time 10 000) and the pure case (up to time 4000).
Domain growth in the pure case is much faster than in the case with the surfactants. We
have used a nonlinear fitting routine to fit the three-parameter power lawL(t) = a + btφ

to the data sets in figure 7(a). For the pure case, we obtain a domain growth exponent
φ = 0.33 ± 0.01, in agreement with the well known Lifshitz–Slyozov growth law which
characterizes domain growth in a pure binary mixture with no hydrodynamic effects. We
should remark here that the Lifshitz–Slyozov growth law for pure systems was originally
derived in the context of 3-d phase separation in systems where one of the components
is present in a very small fraction, i.e. a highly off-critical quench. The validity of this
growth law in 2-d phase separation for a highly off-critical quench was recently established
by Yao et al [22]. The applicability of this law for critically quenched systems (in both
2-d and 3-d) has now been conclusively established through experiments [23], numerical
simulations [24] and theoretical arguments [25]. Our numerical fitting routine does not
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Figure 7. The characteristic domain sizeL(t) as a function of timet for the pure case (up to
dimensionless time 4000); and the surfactant concentrationsc = −0.40 andc = −0.45 (up to
dimensionless time 10 000). We have used a nonlinear fitting routine to approximate the data
with a best fit of the formL(t) = a + btφ . For the pure case, the best fit is denoted as a
solid line on the appropriate data set and corresponds to a growth exponent ofφ = 0.33± 0.01.
For the cases with surfactants, the data do not fit the power-law form. (b) Data from (a) (for
the cases with surfactants) plotted on a log–log scale. The dashed line has a slope of 1/3 and
corresponds to the Lifshitz–Slyozov growth law.

provide a reasonable power-law fit for the case with the surfactants. Figure 7(b) replots the
data from figure 7(a) (for the case with surfactants) on a log–log scale. There is an extended
initial regime with a power-law growth. On a log–log plot, this appears to be somewhat
slower than the Lifshitz–Slyozov lawL(t) ∼ t1/3. However, it is well known that a log–log
plot underestimates the growth exponent at early to moderate times because the functional
form of the growth law isL(t) ∼ a + btφ and notL(t) ∼ btφ . At later times, there is a
crossover to considerably slower growth attc ' 4900 for c = −0.40 andtc ' 6100 for
c = −0.45. This corresponds to the time regime in which interfaces begin to ‘feel’ the
reduction of surface tension due to accretion of surfactants. Our attempts to ascertain the
asymptotic growth law have not been successful, primarily because we do not have data
over a sufficiently extended time regime to clearly identify the asymptotic domain growth
law.

5. Summary and discussion

Let us end this paper with a brief summary and discussion of our modelling and results. In
this paper, we have presented a simple mean-field dynamical model for the phase-ordering
dynamics of binary mixtures with surfactants. Our model mimics the usual stochastic Monte
Carlo procedure whereby one associates Kawasaki spin-exchange kinetics with site variables
(which describe the AB field) and bond variables (which describe the surfactant field).
To make our dynamical equations tractable, we invoke a mean-field approximation and
directly simulate the resultant dynamical equations, studying phase-ordering dynamics from
a disordered initial condition. Our model has the advantage of simplicity but nevertheless
it captures the essential role of the surfactant in diminishing the surface tension. We find
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that the surfactants rapidly migrate to the interfacial regions between coarsening domains.
This slows down the domain growth. However, it does not affect the morphology of the
resultant patterns—at least as reflected in the time-dependent structure factors. Thus, the
scaled structure factor in the case with surfactants is the same as that in pure binary mixtures
and this commonality even stretches into the tail region for moderately large values of the
wavevector. However, for very large values of the wavevector, we find an interesting
difference from the pure case. This is a consequence of the time-dependent interface width
σs(t) (∼ L(t)) in our present problem, resulting from the ongoing accretion of the surfactants
in the interface region. The time-dependent interface width gives rise to a faster decay than
a power-law one in the tail for all time and we do not expect a Porod tail in the case
with surfactants—in contrast to the situation in the pure case. The superuniversal behaviour
of the structure factor (up to the early tail region) is in agreement with experiments of
Hashimoto and Izumitani (see [13]) and the molecular dynamics simulations of Laradjiet
al [9]—though it is at variance with the numerical results presented by Kawakatsu and
co-workers [7].

As far as the domain growth law is concerned, we see an extended regime of power-law
growth in the case with surfactants, which crosses over to a slower domain growth law. At
present, we are performing longer time runs with larger systems in an attempt to investigate
the very late stages of segregation of binary mixtures with surfactants. In particular, we
would like to ascertain the functional form of the asymptotic domain growth law. However,
our previous experience with ‘unusual’ growth laws in systems with quenched disorder
[5] makes us somewhat pessimistic regarding the precise determination of such a growth
law purely numerically—in the absence of any theoretical insight. Of course, Kawakatsu
and co-workers [7] assume that the surface tension approaches zero exponentially with
the length scale, and this leads to an asymptotically logarithmic growth lawL(t) ∼ ln t .
However, theiransatzfor the surface tension does not have a strong physical basis and a
differentansatzwould lead to a different asymptotic growth law. It would be useful to have
a physically realistic theoretical prediction for the growth law—against which long-time
numerical results can be tested.

Before we proceed, we should remark that this crowding effect of surfactants at the
interface is a possibly unphysical consequence of the simple Hamiltonian that we started
with. A more realistic model includes surfactant–surfactant interactions [15], which would
inhibit the ongoing accretion of surfactant molecules at the interface [26]. It is possible
that at some stage of the domain growth in more realistic systems, it may be energetically
favourable for the surfactant molecules to enter into a micellar state within each phase.
Surfactant–surfactant interactions are easily incorporated into our present modelling and we
are currently considering these more realistic models.

Apart from determining the precise nature of the asymptotic growth law in the absence of
hydrodynamic effects, an outstanding challenge for numerical experimenters is to incorporate
hydrodynamic effects into their simulations. After all, most realistic systems with surfactants
are binary fluid mixtures and it is well known that hydrodynamic effects drastically alter
the late stages of phase separation [27]. As a matter of fact, pure binary fluids at a critical
composition exhibit a temporally linear domain growth (L(t) ∼ t) in the late stages of
phase separation [2]. However, for highly off-critical quenches, one recovers a Lifshitz–
Slyozov growth law because the hydrodynamic surface transport which gives rise to a linear
growth can only operate when the phase separating pattern is bicontinuous. It would be
interesting to examine how these growth laws are affected by the presence of surfactants.
An important experiment on phase ordering in critical binary liquids with surfactants is
due to Roux [28] who finds that the asymptotic domain growth law is the same as that in
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pure binary fluids. An obviously important direction for our future work is to incorporate
hydrodynamic velocity fields into our model and examine the nature of domain growth in
critical and off-critical binary fluids with surfactants.
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